启飞汽车设计汽车设计— 国内专业产品设计培训基地!咨询热线:+86-15923339397

启飞汽车

当前位置:主页 > 干货分享 >

车身钢材的性能指标【全网首发】

2017-02-26225作者:启飞汽车设计

车身钢材的性能指标【全网首发】
5.8.1  屈服强度、抗拉强度、伸长率、应变强化指数n(即加工硬化指数)
塑性应变比r值,即宽度方向和厚度方向的变化比值、弹性模量E、硬度 
5.8.2.1 屈服强度
 金属试样在静拉力(5mm/min)试验过程中,载荷不再增加,而试样仍继续发生变形的现象,称为“屈服”。是永久塑性变形的开始。
5.8.2.2抗拉强度
  金属试样在拉力试验时,拉断前所能承受的最大应力,单位为MPa。
5.8.2.3伸长率
   金属在拉力试验时,试样拉断后,其标距部分所增加的长度与原始标距长度的百分比,称为伸长率。
5.8.2.4应变强化指数n
   钢材在拉伸中实际应力(纵轴)-应变(横轴)曲线的斜率。其物理意义是,n值高,表示材料在成形加工过程中变形容易传播到低变形区,而使应变分布较为均匀,减少局部变形集中现象,因此n值对拉延胀形非常重要。n反应了材料开始屈服以后,继续变形时材料的应变硬化情况,它决定了材料开始发生颈缩时的最大应力。
5.8.2.5塑性应变比r值
  r值表示钢板拉伸时,宽度方向与厚度方向应变比之比值。r值越大,表示钢板越不易在厚度方向变形(越不容易开裂),深冲性越好。r值是表征深冲性的重要指标。
5.8.3真实应力——应变曲线
  材料开始屈服以后,继续变形将产生加工硬化。但材料的加工硬化行为,不能用工程应力-应变曲线来描述。因为工程应力σ=F/A,工程应变δ=ΔL/L0 。应力的变化是以不变的原始截面积来计量,而应变是以初始的试样标距长度L0来度量。但实际上在变形过程的每一瞬时试样的截面积和长度都在变化,这样,自然不能真实反映变形过程中的应力和应变的变化,而必须采用真实应力-应变曲线。 
5.8.3真实应力——应变曲线
     材料开始屈服以后,继续变形将产生加工硬化。但材料的加工硬化行为,不能用工程应力-应变曲线来描述。因为工程应力σ=F/A,工程应变δ=ΔL/L0 。应力的变化是以不变的原始截面积来计量,而应变是以初始的试样标距长度L0来度量。但实际上在变形过程的每一瞬时试样的截面积和长度都在变化,这样,自然不能真实反映变形过程中的应力和应变的变化,而必须采用真实应力-应变曲线。
5.9弹性模量
   弹性模量E表示材料在外载荷下抵抗弹性变形的能力。钢铁的弹性模量一般为210GPa,不同类型的材料,其弹性模量可以差别很大。材料的弹性模量主要取决于结合键的本性和原子间的结合力,改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。
   例如铁(钢)的弹性模量为210GPa,是铝(铝合金)的三倍(EAl≈70GPa)。弹性模量是和材料的熔点成正比的,越是难熔的材料弹性模量也越高。
5.10布氏硬度
       a. 布氏硬度试验的基本原理
      布氏硬度的测定原理是:在直径D的钢珠上,加一定负荷P,压入被试金属的表面,根据金属表面压痕的陷凹面积F凹计算出应力值。布氏硬度的符号以HB标计。
      b. 布氏硬度试验的优缺点和适用范围
       优点:代表性全面,因为其压痕面积较大,能反映金属表面较大体积范围内各组成相综合平均的性能数据,故特别适宜于测定灰铸铁、轴承合金等具有粗大晶粒或粗大组成相的金属材料。试验数据稳定,试验数据从小到大都可以统一起来。
      缺点:1、钢球本身变形问题。对HB>450以上的太硬材料,因钢球变形已很显著,影响所测数据的正确性,因此不能使用。
       2、不宜于某些表面不允许有较大压痕的成品检验,也不宜于薄件试验。
5.10.1洛氏硬度值的规定
    生产上用得最多的是A级、B级和C级,即HRA(金钢石圆锥压头、60kgf负荷),HRB(1/16"钢球压头、100kgf负荷)和HRC(金钢石圆锥压头、150kgf负荷),而其中又以HRC用得最普遍。
    因为洛氏硬度是以压痕陷凹深度t作为计量硬度值的指标。在同一硬度级下,金属愈硬则压痕深度t愈小,愈软则t愈大。如果直接以t的大小作为指标,则将出现硬金属t值小从而硬度值小,软金属的t值大从而硬度值大的现象,这和布氏硬度值所表示的硬度大小的概念相矛盾,也和人们的习惯不一致。为此,只能采取一个不得已的措施,即用选定的常数来减去所得t值,以其差值来标志洛氏硬度值。此常数规定为0.2mm(用于HRA、HRC)和0.26mm (用于HRB)。
洛氏硬度试验的优缺点
洛氏硬度试验避免了布氏硬度试验所存在的缺点。它的优点是:
1)因有硬质、软质两种压头,故适于各种不同硬质材料的检验,不存在压头变形问题;
2)压痕小,不伤工件表面;
3)操作迅速,立即得出数据,生产效率高,适用于大量生产中的成品检验。
缺点是:用不同硬度级测得的硬度值无法统一起来,无法进行比较。
5.10..2维氏硬度
      维氏硬度的测定原理和布氏硬度相同,也是根据单位压痕陷凹面积上承受的负荷,即应力值作为硬度值的计量指标。所不同的是维氏硬度采用锥面夹角为136°的四方角锥体,由金钢石制成。之所以采用四方角锥,是针对布氏硬度的负荷P和钢球直径D之间必须遵循P/D2为定值的这一制约关系的缺点而提出来的。采用了四方角锥,当负荷改变时压人角不变,因此负荷可以任意选择,这是维氏硬度试验最主要的特点,也是最大的优点。
四方角锥之所以选取136°,是为了所测数据与HB值能得到最好的配合。因为一般布氏硬度试验时,压痕直径d多半在0.25D到0.5D之间,当d=0.375D时,通过此压痕直径作钢球的切线,切线的夹角正好等于136°。所以通过维氏硬度试验所得到的硬度值和通过布氏硬度试验所得到的硬度值能完全相等,这是维氏硬度试验的第二个特点。此外,采用四方角锥后,压痕为一具有清晰轮廓的正方形,在测量压痕对角线长度d时误差小,这点比用布氏硬度测量圆形的压痕直径d要方便得多。还有,采用金钢石制压头可适用于试验任何硬质的材料。
            和布氏、洛氏硬度试验比较起来,维氏硬度试验具有许多优点。它不存在布氏那种负荷P和压头直径D的规定条件的约束,以及压头变形问题;也不存在洛氏那种硬度值无法统一的问题。而它和洛氏一样可以试验任何软硬的材料,并且比洛氏能更好地测试极薄件(或薄层)的硬度,这点只有洛氏表面硬度级才能做到。但即使在这样的条件下,也只能在该洛氏级内进行比较,和其它硬度级统一不起来。此外洛氏由于是以压痕深度为计量指标,而压痕深度总比压痕宽度要小些,故其相对误差也越大些。因此,洛氏硬度数据不如布氏、维氏稳定,当然更不如维氏精确。
           总的来说,维氏硬度试验具有另外两种试验的优点而摒弃了它们的缺点,此外还有它本身突出的特点——负荷大小可任意选择。唯一的缺点是硬度值需通过测量对角线后才能计算(或查表)出来,因此生产效率没有洛氏高。

热门课程

CONTATC

重庆市渝中区中华路1号LG层LG13号81#

15923339397

2248511017

qifei1899

微信二维码

Copyright © 2002-2018 重庆启飞汽车设计有限公司版权所有渝ICP备18000729号 电话:15923339397

咨询热线:
15923339397
客服QQ:
2248511017